
Renormalization group method for convective diffusion with irreversible sorption 59 

At high frequencies we have 
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Comparison with formulas (6.1) shows that at high frequencies the viscosity of the liquid starts 
playing a dominant role, suppressing the high-frequency non-linear instability. 

In conclusion we note that the LGE theory has been developed much less than the NSE theory, 
because in general the LGE is a non-integrable equation [3]. Nevertheless, the LGE, like the NSE, 
arises in the description of many physical systems [3] and is an important object for research, 
analogies, etc. 
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The renormalization group method is used to analyse the propagation of a thin solute slug in a seepage flow 

with account of diffusion and sorption processes. Sorption is assumed to be partially irreversible and is 

described by an isotherm with a hysteresis loop. A general technique is developed for analysing the 

problem. Calculations for the self-similar case are presented and the results are shown to be sufficiently 

accurate compared with the exact solution. 

A NUMBER of problems in the theory of solute transport by seepage flow require consideration of the 
irreversibility of sorption in the porous medium. Irreversible retention of the solute is particularly 

t Prikl. Mat. Mekh. Vol. 56, No. 1, pp. 68-76, 1992. 
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significant for thin slugs. Irreversibility may have a useful effect for the case of pollutant propagation 
in groundwater or a harmful effect if the solute is used as a tracer for analysing the seepage flow 
structure and especially as a vehicle for enhancing oil recovery. In [l, 21, the conventional model of 
convective diffusion transport of a solute in porous media (see, e.g. [3,4]) has been applied to allow 
for irreversible adsorption in a framework of a very simple scheme. Specifically, linear adsorption 
was assumed with a constant Henry coefficient daldt = I’+ for daldt > 0 and linear desorption with a 
different Henry coefficient daldt = r- for daldt < 0; non-equilibrium time-dependent effects were 
ignored. This adorption “hysteresis” provides a simple description of the experimental data on 
irreversibility of adsorption at least for a one-time increase/decrease of concentration, which is 
typical for the tranversal of a thin solute slug. Exact self-similar solutions of the corresponding 
non-linear model have been constructed in [l, 21 under certain simplifying assumptions: a special 
law of variation of seepage velocity over time and neglecting the dependence of the diffusion 
coefficient on the seepage velocity. 

In this paper, we examine the same problems using the renormalization group (RG) approach. 
The main objective of the study is to assess the applicability of the RG technique and to compare the 
RG results with previous numerical results. This comparison shows that the RG method ensures 
satisfactory accuracy, so that in future it can be applied to more natural physical situations 
(including non-self-similar problems). 

1. Consider the one-dimensional problem of convective diffusion transport of a thin solute slug by 
a fluid flow in a porous medium with a constant diffusion coefficient D and different values of the 
Henry constant for sorption and desorption, i.e. for the regions where the solute concentration 
respectively increases or decreases. This difference of the Henry constants is introduced to account 
for the irreversibility of sorption. The solute concentration .c in this case evolves according to the 
equation 

a (mc ; a @)) + u (t) m$ = D __i!$ 

I--+, dc/& > 0 (1.1) 
a’ (c) = r-, acpt < 0 

Here v(t) is velocity and a(c) is the quantity of sorbed impurity per unit volume of the medium. 
We consider the solution of the Cauchy problem on a straight line for Eq. (1. l), which is 

continuous together with the solute flux i = vc - D&/at. Equation (1.1) can be expressed in an 
equivalent form [H(x) is the Heaviside function] as 

(1.2) 
E = (e* - e-)/e’-, Ef = m + m, f (t) = U (t)/(fi!De+)x 

Note that Eq. (1.2) does not have Galilean invariance, because the Heaviside function depends 
on the Eulerian derivative (a/at) and not on the Lagrangian one (a/at +f(t)alax). The reason for this 
is that sorption is a local process and it is determined by the history of variation of the concentration 
near a given point of the solid porous skeleton at rest, and not in a given moving particle of the 
liquid. Equation (1.2) is a generalization of the equation of a non-linearly elastic drive introduced in 
[4] (see also [5]), which has been investigated in detail in a somewhat different statement in [6]. It 
differs from the previous case by the presence of a convective term. 

With the aim of analysing the evolution of a thin concentration impulse, we choose an almost 
delta-like distribution as the initial condition of the Cauchy problem: 

c (z, 0) = --p& exp i_-a,(~-_~~i(~,d~~i-p.G(~,o.-S) (6>0) (1.3) 

where G(x, t, to) is Green’s function for the convective diffusion equation 
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Green’s function depends on t and to separately, and not on the time lag (t-to), because the 
coefficient in Eq. (1.4) depends explicitly on time. Note that Q. G (x,t, to) is the exact solution of the 
Cauchy problem for the convective diffusion equation [Eq. (2.2) with E = 0] if at the initial instant 
t = -6 the concentration has a delta-function distribution. Let us investigate the behaviour of the 
solution in the asymptotic region t/6+ m. 

2. In the general case (E #O), the solution can be represented in the form 

It has been shown [l, 21 that, like the problem of a modified heat source [4], problem (1.1) for 

(2.1) 

v = p’* and the initial conditions (1.3) does not have a self-similar asymptotic solution of the first 
kind as f+ m (630) that satisfies the conditions of continuity of the solute concentration c and its 
derivative &Z/%X. Yet the problem has a self-similar solution of the second kind with a functional 
representation of the form 

c (z, t) = A c (8 
(~t)(‘+a)/n 

+- 
A =ygliicp, co= s c(x,O)ds, E = 

-0D 
& (2.2) 

where y. is a multiplier that depends on the normalization conditions of c(E), and the exponent a is 
determined by the parameters of the problem. The dependences (Y(E+, E-, p)(p = A/Di’*) obtained 
by numerical solution of the non-linear eigenvalue problem were presented in [l, 21. For l.3 = 0 
[v(t) = 01, this solution is identical with the self-similar solution of the second kind for a modified 
heat source [6]. 

Self-similarity of the second kind implies that the function Fin (2.2) depends non-analytically on 
the parameter 6 as S j0. Therefore, Eq. (1.2) cannot be solved by the ordinary perturbation 
method with a small parameter E taking QoG(x, C, -6) as the initial approximation. Indeed, this 
process, if it were legitimate, would produce a power series in E with every term in the form of a 
self-similar solution of the first kind for 830 (i.e. analytical in a), and the solution therefore would 
be analytical in 6. Non-analytical dependence on 6 is attributable to the fact that adat has a 
non-integrable singularity as 830, and the perturbation-theory corrections therefore contain 
divergences. 

These divergences are similar to the divergences that arise in quantum field theory when regularization is 
removed [7] (in our problem, 6 plays the role of a regularization parameter). The field-theory divergences are 
eliminated by a renormalization procedure, which ensures that non-analytical dependence on the regulariza- 
tion parameter enters only the renormalization constants of the original system parameters and field 
amplitudes. In the presence of a dimensional regularization parameter, the renormalization constants are of 
non-zero dimension, so that the renormalized physical parameters acquire an additional (anomalous) 
dimension, i.e. they transform in an unusual way under scale transformations [7-91. The anomalous dimension 
exponents in field theory are identical with the exponents of partial self-similarity (self-similarity of the second 
kind) in the intermediate asymptotic (IA) solution method [6]. This phenomenon has been noted in [lo]. In 
field theory, the anomalous dimension exponents are calculated by the RG method, which provides a technique 
for improving the perturbation-theory results by imposing the condition of renormalization invariance, i.e. a 
condition ensuring that the computed asymptotic behaviour of a physical quantity is independent of the choice 
of the normalization conditions [7,9]. 

In this paper, the method of calculating the anomalous dimension exponent for the diffusion equation with 
sorption hysteresis [lo] is generalized to the case of diffusion-convective transport. A self-similar solution of the 
second kind for convective transport has been obtained by the IA method [l, 21 for the case v = Xt l/2. 

3. In accordance with the RG method [l], we rewrite Eq. (1.2) in the integral form 



62 I. S. GINZBURG et al. 

c(x,t)= dx'G(s-s',t,O)c(x',0)~ s 
-_e dx’ dt’G(x-x’t, t’)H s s - ac(?$“] [f (+&-&&] C(X’d’) 

where the first term on the right-hand side is the solution of the unperturbed problem (E = 0). 
Substituting the initial condition (1.3), we obtain 

c(O) (5, t) = -5 &'G (5 --51x', t, 0) c (cc', 0) = QaG (z:, t, 4) (3.1) 

Here we have used the fact that Green’s function of the convective-diffusion transport equation 
(1.4) obviously satisfies the relationship 

G (x - zo, t, to) = @'G (x - d, t, t') G (d - x0, t', to) (3.2) 

which is essentially a Smoluchowski-Kolmogorov-Chapman equation for a Markov process [ 121. 
Iterative solution of the integral equation corresponds to the representation of the solution c as a 

perturbation-theory series in powers of E, in which every term diverges as S=$O. Improvement of 
the perturbation theory reduces to rearranging this series by renormalization of the coefficient Q0 in 
(3.1). To this end, substituting (3.1) into the integral equation, we replace the original parameter Q0 
by the renormalized (phenomenological) parameter Q = ZQO and add to the perturbing part a 
compensating counterterm (CT) of the form (1 - 2) QO(x, t, -S>. As a result, we obtain 

c (5, t) = QG (z, t, --6) - e SaZ’ s dt’G (a: - x’, t, t’) x 

x H [--a~ (51, q/at’] [f (t) alad - y,ayas] x 

x c (d, t’) + (1 - 2) QaG (2, 4 --6) (3.3) 
The renormalization constant Z is defined in such a way that the singular correction to the 

renormalized Q vanishes as S 30 at some “normalization point” t = T. 
We are looking for the asymptotic solution of the problem in the form 

c (z, 0 = Q (t, 6, 8, 00) t-SF (5, t, e), Q (t, s, 8, QrJ = s d;cc (5, t) (3.4) 

i.e. the non-analytical dependence on 6 as 8 30 only occurs in the function q (t, 6, E, Qo), which 
represents the total quantity of the solute at time t (it varies as a result of partial irreversibility of 
sorption). The function F(x, t, E) depends on the self-similar variable [X - /f(s)ds12/t, but it is no 
longer a Gaussian exponential. 

For E = 0, we have 

q = Qw F (x, t, 0) - -& 
0 

(3.5) 

and the constant Q0 is the total amount of the solute in the fluid, which remains constant. The 
asymptotic solution corresponding to a thin initial impulse is self-similar. 

The renormalization constant Z = Q/Q, is defined by the condition 

Q = q (t, 6, 8, Qo) It-t (3-6) 
By (3.6), the singular dependence on S is incorporated in the phenomenological parameter Q, 

which is the amount of impurity at time T. 
When c(x, t) is evaluated by the renormalized perturbation theory, the function q(t, 6, E, Q,} 

defined by (3.4) depends in the limit as t+ 03 (6 +O) on the parameter Q = ZQO, the time t, and the 
choice of the normalization point 7; from dimensional considerations we obtain 

q (t, 6, e, Qo) --t q (h z, 8, Q> = Q~J (tk 4 (3.7) 

Renormalization invariance implies that the physical picture does not change when the timescale 
T is replaced by 71 and Q is accordingly replaced by Q1 [the parameter Q1 is defined by (3.6) for 
t = ~~1, i,e. 

Qrp Ok 8) = Qg (t/c, 8) W-9 
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By the normalization condition (3.6), 

cp (1, 8) = 1 (3.9) 

From (3.8) and (3.9), we obtain the RG functional equation for the function cp: 

cp (u, e) = cp (A, a) cp (u/h, e) (3.10) 

Differentiating (3.10) with respect to A and then setting A = 1, we obtain the RG differential 
equation 

{-u#‘% + aA} q (u, e) = 0, aR = hkp (u, e)/f%d 1-1 (3.11) 

The solution of Eq. (3.11) that satisfies the normalization condition (3.9) has the form 

cp (t/r, e) = (t/~)~n(‘) (3.12) 

and the problem of finding the partial self-similarity exponent reduces to evaluating the function 
cp(t/~, E) near the normalization point t = T. By the RG method in its field version [7], we calculate 
Q(t/T, e) in the lowest approximation of the renormahzed perturbation theory, i.e. we take the first 
iteration for Eq. (3.3) 

c(iz,t)=QG(s,t,- 6)+eQ~dt’~dz’G(z-z’,t,:t’) x 
0 

x H [- aG (z’, t’, - Q/at’] ix (z’, t’, -6)/i% + CT 

Using the expression for Green’s function (1.3) and definition (3.6), we obtain 

(3.13) 

u+u’, 6) 

~(t9~~e9Qo)=Q0~~~+* j$( t+l_r,)H $ dw x 
w_(t’. 6) 

x exp 
I 
-WI t+b 

2 t+d-tt’ 1 b- i”+ 2w Jmf(t’ + is)] + 

-I- Qo (I- 2) wt + a w*(t,6)=+I/tp(t-6)+1-ttf(t-~) (3.14) 

As t/6-+ ~0, noting that the main contribution to the integral (3.14) for 6 JO comes from the 
region of small t’, we obtain 

q (t, 6, e, Qo)= Qoz( 1 + e/(h)% ’ $- 

vJ+@‘, 0) 

a 5 
dw W (w, t’)} + Qo (1 - 2) (3.15) 

W_(V) 0) 

w (w, t) = exp (-wV2)lw2 - 1 + 2wvmj (t)1 

The parameters of the CT Q,,(l - 2) are chosen so that they satisfy the normalization condition 
(3.6). As a result, we obtain 

t 

e(t/r,.)=i+$$S$-rdwW(w,t’) (3.16) 
% I0_ 

In the self-similar case, whenf(t) = yt -l’*, the functions w+ are independent oft and the integrals 
are easily evaluated. We obtain 

cp (t/7, e) = 1 + CA In (VT) (3.17) 

(3.18) 

For small E, we should thus have 
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FIG. 1. 

-2~~3 (e, y) = a (et, e-, fJ), y = fY(2e+)W, e = (8' - e-)/e- (3.19) 

Figure 1, using the graphs of CX(E+, EC, fi) from [l, 21, compares the values of 2~ (the RG 
method, the solid curves) and OL (the IA method, the dashed lines) as a function of E for two fixed 
values of E-: e- = 0.25 (m = 0.2, I+ = 0.05, the left scale) and E- = 0.4 (m = 0.2, I- = 0.2, the 
right scale). Note that for E- = 0.4 the values of -2~ and (Y are virtually identical. For E- = 0.25, 
for large values of y and the same values of E, the calculation of (YR up to the first term of 
perturbation theory is insufficiently accurate. For p = 0, the results of calculations from (3.18) are 
identical with the calculations of ‘YR in [lo]. 

4. The same method is applicable to the axisymmetric convective diffusion problem with 
irreversible sorption in a stationary velocity field of the form 

v (r) = h/r2 (4.1) 

In this case, the concentration equation 

l&Vat + WV/& - Daly (r, t) = 0 

for a radially symmetric initial distribution can be represented like (1.2) in the form 

(4.2) 

i 
p-1 a 

~-+--y~--T =eqea ][ aT2 } c (r, t) = 

ac a* p-i a -- at a22 -7 r 1 c(r,t), B = +- (4.3) 

Here we have made the change of variables rJr(DIE+)“*. As in the passage to Eq. (3.3), we 
rewrite Eq. (4.3) in integral form 

c (r, t) = j r’dr’G (r, r’, t) c (r’, 0) + e i dr 1 r’dr’G (r, r’, t-s) x 
0 0 0 

XH 
[ 

p-1 a -&c(r’,s)] [&--~~]~(r’~s) 
Green’s function G(r, r’, t) satisfies the equation 

{Wdr+ (p - 1) r%3/3r - a2/ar2} G (r, r’, t) = 6 (t) 6 (r - r’) rsi 

the solution of which has the form 

G (r, r’, t) = H(t) t-$)” f J. dh exp (- k8t) Islr (Ix) 161, (hr’) 
a 

(4.4) 

(4.5) 

(4.6) 
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where J,(X) is Bessel’s function of the first kind. 
Using the well-known Fourier-Bessel integrat, we can show that Green’s function (4.6) satisfies 

the Smoluchowski-Koimogorov~hapman equation 

G (r, r,,, t -to) = 1 r’dr’G (r, F’, t-t’) G (r’, r,, t’ - to) (4.7) 
a 

which is an analogue of relationship (3.2) for the one-dimensional problem. 
Taking the initial distribution in the form 

(4.8) 

and using (4,7), we obtain the solution of the unperturbed problem 

Equation (4.3) thus takes the form 

c(r,t) =Q,G(r,O,t+i3)+e~dr~ r’dr’G(r,r’,t--s)x 

b 0 

(4.10) 

Like the above, we renormalize the parameter Qe by making the change Qe+Q = ZQo and 
adding a compensating counterterm. Then, in the lowest approximation of the renormalized 
~rturbation theory, we obtain 

XH - I N (r’, 0, s + 6) 
B8 1 

aG (r”z ” ‘) + CT = QG (r, 0, f + 8) + 

r’ &r’G (r, r’, t + 8 - s) 2F fi \ grz, ($-)“” exp (- $) x 

As SjO, the main cont~bution to the integraf over s is from the region near s = 0, where the 
integrand is singular. Retaining in (4.11) only the contribution from the singular part and choosing 
the reno~alization constant 2 from the normal~ation condition (3.6), we obtain for the totat 
quantity of the solute 

gftt r, a) = Q (1 - sA In (tk)) (4.12) 

Thus, for the partial self-similarity exponent we obtain in our problem 
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FIG. 2. 

aR = --eA (4.13) 

The comparison of the self-similarity exponents 1 - 201~ (calculated by the RG method) and OL(E+ , 
E-, y> (calculated by the IA method [lj) is p resented in Fig. 2. The results are close to those for the 
convective diffusion equation in the one-dimensiona case. Here the left scale corresponds to 
Iy1= 0.2, r- = 0.05, and the right scale to m = 0.2, I’+ = 0.2. 

The method of Sec. 4 can also be used to solve the diffusion equation with irreversible sorption 
(without convection) in the d-dimensional case. As a result, for the partial self-similarity exponent 
we obtain the expression 

aa = --e (d/(2e))d’8/I’ (d/2) (4.14) 

which in the one-dimensional case d = 1 reproduces the previous result of [lo]. 
We would like to thank N. Goldenfeld for kindly providing us with a prepublication copy of [lo]. 
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